“If We Ever Encounter Extraterrestrial Intelligence it is Overwhelmingly Likely to be Post-Biological”


During an epoch of dramatic climate change 200,000 years ago, Homo sapiens (modern humans) evolved in Africa. Several leading scientists are asking: Is the human species entering a new evolutionary, post-biological inflection point? Paul Davies, a British-born theoretical physicist, cosmologist, astrobiologist and Director of the Beyond Center for Fundamental Concepts in Science and Co-Director of the Cosmology Initiative at Arizona State University, says that any aliens exploring the universe will be AI-empowered machines. Not only are machines better able to endure extended exposure to the conditions of space, but they have the potential to develop intelligence far beyond the capacity of the human brain.

“I think it very likely – in fact inevitable – that biological intelligence is only a transitory phenomenon, a fleeting phase in the evolution of the universe,” Davies writes in The Eerie Silence. “If we ever encounter extraterrestrial intelligence, I believe it is overwhelmingly likely to be post-biological in nature.”In the current search for advanced extraterrestrial life SETI experts say the odds favor detecting alien AI rather than biological life because the time between aliens developing radio technology and artificial intelligence would be brief.

“If we build a machine with the intellectual capability of one human, then within 5 years, its successor is more intelligent than all humanity combined,” says Seth Shostak, SETI chief astronomer. “Once any society invents the technology that could put them in touch with the cosmos, they are at most only a few hundred years away from changing their own paradigm of sentience to artificial intelligence,” he says.

ET machines would be infinitely more intelligent and durable than the biological intelligence that created them. Intelligent machines would be immortal, and would not need to exist in the carbon-friendly “Goldilocks Zones” current SETI searches focus on. An AI could self-direct its own evolution, each “upgrade” would be created with the sum total of its predecessor’s knowledge preloaded.

“I think we could spend at least a few percent of our time… looking in the directions that are maybe not the most attractive in terms of biological intelligence but maybe where sentient machines are hanging out.” Shostak thinks SETI ought to consider expanding its search to the energy- and matter-rich neighborhoods of hot stars, black holes and neutron stars.

Before the year 2020, scientists are expected to launch intelligent space robots that will venture out to explore the universe for us.

“Robotic exploration probably will always be the trail blazer for human exploration of far space,” says Wolfgang Fink, physicist and researcher at Caltech. “We haven’t yet landed a human being on Mars but we have a robot there now. In that sense, it’s much easier to send a robotic explorer. When you can take the human out of the loop, that is becoming very exciting.”

“More Complex than a Galaxy” –New Insights into the Human Brain


“Consider the human brain,” says the physicist Sir Roger Penrose. “If you look at the entire physical cosmos, our brains are a tiny, tiny part of it. But they’re the most perfectly organized part. Compared to the complexity of a brain, a galaxy is just an inert lump.”

In a new study, scientists argue that many of our high-level abilities are carried out by more extensive brain networks linking many different areas of the brain. They suggest it may be the structure of these extended networks more than the size of any isolated brain region that is critical for cognitive functioning. The frontal lobes in humans vs. other species are not — as previously thought — disproportionately enlarged relative to other areas of the brain, according to a study by Durham and Reading universities.

It concludes that the size of our frontal lobes — an area in the brain of mammals located at the front of each cerebral hemisphere — cannot solely account for humans’ superior cognitive abilities.

The study also suggest that supposedly more “primitive” areas, such as the cerebellum, were equally important in the expansion of the human brain. These areas may therefore play unexpectedly important roles in human cognition and its disorders, such as autism and dyslexia, say the researchers.

The Durham and Reading researchers, funded by The Leverhulme Trust, analyzed data sets from previous animal and human studies using phylogenetic (“evolutionary family tree”) methods, and found consistent results across all their data. They used a new method to look at the speed with which evolutionary change occurred, concluding that the frontal lobes did not evolve especially fast along the human lineage after it split from the chimpanzee lineage.

Human brains share a consistent genetic blueprint and possess enormous biochemical complexity. The same basic functional elements are used throughout the cortex and understanding how one area works in detail will uncover fundamentals that apply to the other areas as well, according to an earlier study completed by scientists at the Allen Institute for Brain Science.

Human brains share a consistent genetic blueprint, and possess enormous biochemical complexity, they said, based on the first deep and large-scale analysis of the vast data set publicly available in the Allen Human Brain Atlas. Among other findings, these data show that 84% of all genes are expressed somewhere in the human brain and in patterns that are substantially similar from one brain to the next.